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Abstract: Maintaining traceability links of software systems is a crucial task for software management
and development. Unfortunately, dealing with traceability links are typically taken as afterthought
due to time pressure. Some studies attempt to use information retrieval-based methods to automate
this task, but they only concentrate on calculating the textual similarity between various software
artifacts and do not take into account the properties of such artifacts. In this paper, we propose a
novel traceability link recovery approach, which comprehensively measures the similarity between
use cases and source code by exploring their particular properties. To this end, we leverage and
combine machine learning and logical reasoning techniques. On the one hand, our method extracts
features by considering the semantics of the use cases and source code, and uses a classification
algorithm to train the classifier. On the other hand, we utilize the relationships between artifacts and
define a series of rules to recover traceability links. In particular, we not only leverage source code’s
structural information, but also take into account the interrelationships between use cases. We have
conducted a series of experiments on multiple datasets to evaluate our approach against existing
approaches, the results of which show that our approach is substantially better than other methods.

Keywords: requirements traceability recovery; artificial intelligence; machine learning; rule-based
reasoning; feature engineering

1. Introduction

Software systems generate a large number of software artifacts during iterative development,
such as requirements documents, source code, test cases, and bug reports [1]. Software traceability is
the ability to trace software artifacts that are produced in different phases of software development,
which is an important quality of software systems [2]. Maintaining requirements traceability links
between requirements artifacts and other software artifacts (e.g., source code) is essential for program
understanding, impact analysis, and software development management. In particular, the satisfaction
of requirements can be effectively evaluated based on such requirements traceability links [1].
Therefore, this topic has attracted more and more attention in the field of software engineering.

With the continuous iterative development of software systems, software artifacts are constantly
modified and the corresponding traceability links have to be continuously updated and maintained,
which is an expensive and non-trivial task [3,4]. In the development process of real software projects,
due to the time pressure, developers typically do not deal with the traceability links during their
development as it does not bring short-term benefits. Therefore, traceability links are often not updated
and maintained in time and thus typically outdated or even missing [2,5]. It is essential to recover
the traceability links between software artifacts, contributing to the successful software maintenance
and evolution [4].
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Creating and maintaining traceability links manually is simple and straightforward,
but time-consuming, and so it is only suitable for small projects [1]. Several studies in the field of
software engineering are dedicated to solving this problem through automation [4,6]. The IR (Information
Retrieval)-based methods are a classic method for traceability recovery [3]. Such methods focus on
calculating text similarity between software artifacts via typical IR methods, e.g., Vector Space Model
(VSM) [7] and Latent Semantic Indexing (LSI) [8], creating traceability links between artifacts that have
high similarity. However, the IR-based approaches typically only consider the text of software artifacts,
which include a large proportion irrelevant and redundant information, resulting in lower accuracy [3,5].
Some studies attempt to use structural information (relationships between source code, such as class
inheritance) to improve IR-based methods [3,4,9]. However, the existing approaches do not systematically
and comprehensively explore the structural information of related artifacts [3].

In this paper, we propose a hybrid framework to systematically and effectively recover traceability
links between requirements use cases and source code classes, which is shown in Figure 1. Specifically,
we propose to concentrate on only essential information for traceability link recovery based on the
corresponding domain knowledge. All such essential information is used to engineer features for
training traceability link classifiers, i.e., phase 1 in Figure 1. In the second phase, we investigate and
explore the structural information between use cases and source code classes, respectively, and define
corresponding inference rules in order to discover more traceability links. This paper is an extended
version of our previous work [10]. In particular, we have significantly extended and improved our
previous work in the following aspects.

• We further investigate the semantics of code constructs and improve our framework by proposing
an additional collection of meaningful features.

• We conduct in-depth investigation on the relationships between use cases, based on which we
have defined five additional logical reasoning rules to enhance the effectiveness of the second
analysis phase.

• We have extensively enriched the evaluation by considering three additional data sets (previously
only one data set was used). Correspondingly, we have designed and conducted many more
experiments to comprehensively evaluate our proposal.

Figure 1. The overall process of our study.
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The reminder of the paper is structured as follows. In Section 2, we survey existing related works
and discuss their advantages and disadvantages. We then present our proposal in a step-by-step
fashion in Section 3. Section 4 presents the details of our evaluation, in which we have systematically
designed and conducted a series of experiments. After that we review the threats to validity of our
experiments in Section 5. Eventually, we conclude the paper and discuss future work in Section 6.

The remaining part of this paper is organized as follows. We first review and discuss related
work in Section 2. We detail our main proposal in Section 3, while reporting its evaluation in terms of
experiments in Section 4. Discussions regarding threats to the validity of our proposal are described in
Section 5. Finally, Section 6 concludes the paper and points out future work.

2. Related Work

2.1. IR-Based Methods

Software artifacts contain a lot of textual information. The classic method is using IR techniques
for traceability link recovery. This kind of method considers that software artifacts with high text
similarity probably have traceability links. Hayes et al. propose using VSM, LSI and other IR methods
to calculate the textual similarity between artifacts directly, obtaining candidate links by setting a
threshold or selecting the first k links [11–14]. De Lucia et al. improve traceability recovery by using a
smoothing filter [13].

Oliveto et al. apply a variety of different IR methods, namely JS (Jenson-Shannon) [15], VSM [7],
LSI [8] and LDA (Latent Dirichlet Allocation) [16] for traceability recovery to improve the accuracy of
independent methods [17]. The results show that VSM, JS and LSI are equivalent, while the precision
of LDA is lower than other IR methods. However, LDA can capture unique dimensions and provide
orthogonal similarity measures. The combination of LDA and other IR technologies can improve the
precision of traceability recovery.

Gethers et al. propose a relational topic model (RTM) [18] based on LDA, which can extract and
analyze topics and the relationships between them from software artifacts [2]. Case studies show
that when RTM is combined with VSM and JS, the results of traceability recovery are improved.
They proposed the RTM is orthogonal to VSM and JS [2].

Capobianco et al. propose a simple method based on IR which only considers nouns [5,19].
The proposed method extracts the nouns from software artifacts and indexes them to define the
semantics of the software artifacts. They propose that the basic principle of the method is that the
language used in the software documents can be classified as sectoral language, in which nouns
provide more indication of the semantics of the document [5]. The proposed method is applied to JS
and LSI models, improving the precision.

Asuncion et al. propose an automatic technology that combines traceability recovery with LDA
topic modeling [1]. It automatically records traceability links during software development and learns
probabilistic topic models on artifacts. The learned model allows semantic classification of artifacts
and topic visualization of software systems. At the same time, they propose a prospective method
which creates links between artifacts based on the operation of developers. They implement several
tools to validate their method.

This type of method can create and maintain the traceability links automatically and reduce the
cost of traceability recovery. However, it treats the contents of software artifacts as simple text, which
will be interfered with by a lot of irrelevant redundant information, and returns a large number of
false-positive links, resulting in low precision.
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2.2. Hybrid Methods

Some studies propose combining textual information and structural information of software
artifacts for traceability recovery. The combination method obtains a set of candidate links based on
IR method initially, and then updates the similarity of the traceability links based on the structural
information, thereby extending or filtering the traceability links.

McMillan et al. propose a technique to recover traceability links by combining textual analysis
and structural analysis [9]. They speculate that related requirements share related source code [9].
In textual analysis, they get the textual similarity between software artifacts using LSI. In terms of
structural analysis, they use the JRipples [20] structural analysis tools to recover traceability links
between source code artifacts and build an Evolving Interoperation Graph (EIG) [21]. They propose
the Traceability Link Graph (TLG), which encodes all recovered traceability links as edges between
nodes. Taking the textual similarity matrix calculated by LSI, the EIG constructed by JRipples and the
threshold of similarity as input, a TLG is created and traceability links are generated according to the
relationship between the nodes. They name this method as Indirect Traceability Link Recovery Engine
(ILRE) [9]. A preliminary case study shows that the combined approach improves precision and recall
compared to independent methods based on textual similarity.

Panichella et al. believe that the combination method is susceptible to the IR method [3].
If the candidate links obtained by IR are correct, then the use of structural information can help
to find more correct links. Otherwise, using structural information is not helpful and may even
lead to more unrelated links. Therefore, they propose that software engineers should verify the
traceability links recovered by the IR method before extending traceability links with structural
information [3]. The structural information should only be used in the situation where the traceability
links recovered by the IR method are identified as correct links. They propose a method named
User-Driven Combination of Structural and Textual Information (UD-CSTI) [3]. Experiments show
that the UD-CSTI outperforms pure IR-based methods and methods that combine textual information
with structural information simply.

Zhang et al. implement a tool named R2C which utilizes synonyms, verb-object phrases,
and structural information to recover traceability links between requirements and source code [4].
R2C uses WordNet [22] to locate synonyms for a given term and defines a method for calculating
the similarity between two terms. R2C uses Stanford Parser [23] to analyze the syntactic structure of
the sentence and extract verb-object phrases. Because requirements and code comments are different
from programming languages, they use different methods to extract verb-object phrases from them.
They build a code graph according to the method call and inherit the relationship of the code,
increase the similarity of requirements, and code according to the code graph with an adaptive
reward. An empirical study shows that verb-object phrases are the most effective feature to recover
traceability links. R2C can achieve better results when compared with IR-based techniques using a
single feature.

Kuang et al. suggest using closeness analysis for call dependencies to improve existing methods [24–27].
Specifically, they quantify the closeness of each call dependency between the two methods, refining the
quality of keywords extracted from source code changes, thereby improving the accuracy of outdated
requirements identification. The proposed method is named SPRUCE (SuPporting Requirements Update
by ClosEness analysis). Although these combination methods have improved the performance of the
traceability recovery to some extent, they are very dependent on the results of the IR method.

2.3. Other Studies

There are several other approaches in the literature to recovering traceability links. Ali et al.
inspired by the web trust model, propose a method called Trustrace to improve the precision and
recall of traceability recovery [28]. Trustrace can get a set of traceability links and re-evaluate rankings.
They also propose a method named Histrace to identify traceability links between requirements and
source code by establishing VSM in CVS/SVN changelogs. Diaz et al. propose a method called
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TYRION (TraceabilitY link Recovery using Information retrieval and code OwNership) [29]. It uses
code ownership information to capture the relationship between source code artifacts to improve
traceability recovery between documents and source code. Specifically, it extracts the author of each
source code component and determines the context of each author. It then computes the similarity
between the document and the context of the author.

Ali et al. speculate that understanding how developers verify traceability links can help improve
IR-based technology [30,31]. Firstly, they use an eye-tracking system to capture the eye movements of
developers while verifying traceability links. They analyze the obtained data to identify and rank types of
source code entities according to developers’ preferences. They propose a term weighting scheme SE/IDF
(source code entity/inverse document frequency) and DOI/IDF (domain or implementation/inverse
document frequency). They integrate the weighting scheme with the LSI technique and apply it to
traceability recovery. Lucassen et al. propose Behavior Driven Traceability (BDT) to establish traceability
by using automatic acceptance testing [32]. These tests detail user story requirements into steps that reflect
user interaction with the system. Unlike unit tests, these steps do not directly execute the source code itself.
Instead, it initiates a full instantiation of the software system and then simulates how the user interacts with
the interface. It uses a runtime tracker to identify all the source code without the need for IR techniques.

Guo et al. use deep learning to incorporate the semantics and domain knowledge of requirements
artifacts into a traceability solution [33]. They use word embedding and recurrent neural network
(RNN) models to generate traceability links. Word embedding learns word vectors representing
domain corpus knowledge, and RNN uses these word vectors to learn sentence semantics of artifacts.
They identify the Bidirectional Gated Recurrent Unit (BI-GRU) as the best model for traceability.
The experiment result shows that BI-GRU significantly surpasses VSM and LSI.

Sultanov et al. make use of reinforcement learning (RL) for traceability [34]. The RL method
demonstrates targeted candidate link generation between textual requirement artifacts. It does so by
identifying common text segments between documents and suggesting links between these documents.
The RL method surpasses TF-IDF in terms of recall. Ana et al. propose a method called Evolutionary
Learning to Rank for Traceability Link Recovery (TLR-ELtoR) [35]. They recover the traceability
links between requirements and models by combining evolutionary computing and machine learning
to generate rankings of model fragments that can fulfill requirements. Although these methods
can improve traceability recovery to a certain extent, they usually require preconditions, are often
accompanied by high computing complexity, and the improvements are limited.

3. A Hybrid Traceability Recovery Approach

Our entire approach is systematically designed with three phases (including preprocessing),
which is presented in Figure 2. Specifically, the traceability links we investigate in this paper are
the ones that connecting use cases and source code classes. As shown in the figure, our approach
starts with a preprocessing phase, which is designed to extract data that is relevant and meaningful
to our approach. In phase 1, (i.e., machine learning recovery), according to the domain knowledge,
the information that is critical to the traceability links recovery of software artifacts is extracted to
engineer features. Following this, the traceability links between software artifacts are represented as
vectors based on these features, which are then used to train traceability link classifiers. In phase 2
(i.e., logical reasoning recovery), the structural information between the source code classes and the
interrelationships between the use cases are explored in depth to complement the trained classifiers
obtained in the first phase. The details of our proposal are presented in the remainder of this section.

3.1. Preprocessing

The software artifacts that are derived from real projects typically contain noise and cannot be
used directly by our proposed workflow. Thus, as the first step of our approach, we follow a classic
process to pre-process the contents of the software artifacts, as follows:
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• Remove punctuation, numbers, and special characters in software artifacts.
• Extract words in software artifacts by word segmentation. Not that use cases and source code

comments are typically written in natural language, while and source code itself is developed
with specific programming languages. Since natural language and programming languages
are different, we need to deal with them separately. For natural language texts that appear
in the content of use cases and comments in source code files, all words are separated by
spaces. For source code identifiers, such as class names and method names, we perform word
segmentation according to the naming convention adopted in the project, such as the camel-case
style and underscore style. It is worth noting that we here assume that the source code should
comply with certain naming conventions, otherwise, it cannot be appropriately processed by our
segmentation algorithm.

• Since many project repositories are developed and documented in natural languages other than
English, it is necessary to translate the content of the software artifacts. To this end, we leverage
the advanced translation engine to translate all the documents into English, if they were originally
not specified in English. In particular, we used Google Translate APIs in this paper, which would
be evolved according to the recent advances in language translation.

• We remove the stop words from the software artifacts (We refer to the stop word list at https:
//gist.github.com/sebleier/554280). In addition, we also remove Java keywords in source code
comments (e.g., static and private).

• We perform lemmatization for all words in order to facilitate natural language analysis,
i.e., transforming the verb, noun, adjectives and adverbs into their bases.

3.2. Phase 1 Machine Learning Recovery

In the first analysis phase, we propose a machine learning-based method to recover a preliminary
set of traceability links. Specifically, we select the essential features of software artifacts and vectorize
the traceability links based on such features. The detailed analysis process (as shown in Figure 2) is
presented and explained below.

3.2.1. Feature Extraction

As use cases and source code are written in natural languages and programming languages,
respectively, they involve different types of information that are not all useful for identifying traceability
links. For example, the specific programming statements typically do not correspond to requirements,
while class names, method names, and method comments are very likely to reflect the functional
requirements. Similarly, use cases are documented with various fields, only some of which are
meaningful for traceability link analysis. In this paper, we exclusively investigate the following
features which are meaningful for recovering traceability links (Table 1).

Table 1. The vital features of a traceability link vector in Phase 1.

Artifact Feature Description

Use
Case

Title The title of use case
Description The description of use case

Source
Code

Class Name The class name
Class Comment The comment associated with a class
Method Name The method name in a class
Method Comment The comment associated with a method
Class Attribute The class attribute (Type, name)
Method Parameter The method parameter (type, name, Javadoc)
Method Return The method return (type, name, Javadoc)

https://gist.github.com/sebleier/554280
https://gist.github.com/sebleier/554280
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Figure 2. The analysis process of our proposed hybrid approach for recovering traceability links.

Building on our previous research [10], we further explore the class attributes, method parameters,
and method return information of the source code as the features in the traceability link vectors.
Also, we find that the type, name and Javadoc of the class attributes, method parameters and method
return are the most influential information for identifying traceability links. Here, we illustrate the
importance of such information in detail.



Appl. Sci. 2020, 10, 7253 8 of 23

Type. Figure 3 shows a code segment of parameter type information as an example. In the
parameter list (IdentityCard c) of the method registerIdentityCard, the parameter name c is
abbreviated and contains no information, but the parameter type IdentityCard is valuable information.
This suggests that the type information of the parameter should be considered to be relevant and useful.

Figure 3. An example of parameter type information of a code feature.

Name. An example of parameter name information of a code feature is shown in Figure 4. In the
parameter list (int citizenId, String newEmail) of the method modi f yCitizenEmail, the parameter
types int and String are common Java keywords and contain no useful information, whereas the
parameter names citizenId, newEmail are valuable information. Thus the name information of the
parameter should also be considered.

Figure 4. An example of parameter name information of a code feature.

Javadoc. An example of Javadoc information of a code feature is shown in Figure 5. Javadoc is a
standardized and widely accepted way to document Java programs, from which we can extract classes
and methods from the program source code. For example:

@param The description of a method parameter
@return The description of the method return value

Figure 5. An example of parameter Javadoc information of a code feature.

Therefore, Javadoc comments are also useful information. The parameter type and parameter
name of the parameter list (int pId) do not contain much information, but the @param annotation
contains a lot of valuable information. Therefore the Javadoc comments for the parameters also include
important information that is considered in our approach.

Specifically, for the method parameter and method return features, we focus on their type, name
and Javadoc information. Since the Class Attribute does not have corresponding Javadoc comments,
its type and name information are considered. In the experimental evaluation, we will evaluate the
experimental results of adding these three features.

3.2.2. Vectorization

In order to embed the semantics of all the essential features we have mentioned previously,
we propose a vectorization approach to comprehensively characterize the interrelationships between
use cases and source code classes. Vectors are computed based on the features of use cases and source
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code. Specifically, only features identified in Table 1 are considered. If one feature involves multiple
contents, for example, a class has multiple method names, we will merge these into a single feature.
The vector of the link is defined as follows:

vector = (d1, d2, . . . , d14)

di = sim( f eatureusecase, f eaturesourcecode)

i = 1, . . . , 14

(1)

As is shown in Figure 6, we compute the similarity between each use case feature and each source
code feature, so we can obtain a vector with 14 dimensions. Each dimension of the vector represents a
particular aspect of similarity between features. Therefore, we convert the corresponding contents of
each feature into a sentence vector by using the Doc2vec algorithm [33]. Then, we compute the cosine
similarity between two vectors, the results of which are used to characterize the particular dimension
of the vector. Eventually, we cam obtain the traceability link vectors, comprehensively representing
the relationship between the use cases and source code.

Figure 6. Computation of the similarity between each feature.

To formally and clearly represent the links between use cases and source code classes, we propose
formal definitions, which are shown in Table 2. Specifically, we enumerate all possible links between
each use case and each source code class. The id indicates the source artifact and target artifact of the
link. The vector presents the vectorized link interrelationships that were derived previously. The tag is
a boolean variable, which indicates whether the link is a valid traceability link or not.

Table 2. The definition of a link between a use case and a source code component.

Attribute Value Description

id (si, cj) si: Use Case, cj: Source Code

vector (d1, d2, ..., dn) The vector that represents link relationship

tag 0/1 0: unrelated link; 1: related link

3.2.3. Machine Learning Classification

In this step, we input all the tagged training data into specific classification models in order to
obtain the corresponding classifiers. Specifically, we have combined multiple classification algorithms
in order to yield an inclusive and comprehensive classifier, including decision tree, k-nearest neighbors
(KNN), random forest, and gradient boosted decision trees (GBDT). All links that are classified by any
of these classifiers as true will be included in the set of candidate links. The design rationale of this is
to emphasize the recall of the final recovery model.
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3.3. Phase 2 Logical Reasoning Recovery

There are a large number of relationships in software artifacts, which are of great significance
for traceability recovery. Therefore, we make use of such relationships between software artifacts to
improve traceability recovery. Specifically, we have identified a set of important relationships among
source code classes and use cases based on related domain knowledge, respectively. According to such
relationships, we have defined corresponding inference rules to effectively identify traceability links.

3.3.1. Structural information between Source Code Components

There many types structural information among source code components such as implementation,
inheritance, and method call. The structural information reflects the closeness between source code
components and is of great value for traceability link recovery. Based on our previous research [10],
we have added the use of class attribute and method call relationships for traceability recovery.
Such features are selected based on both our domain knowledge and empirical studies. Specifically,
the implements relationship between a class and an interface indicate the class has similar functions with
the interface, and they should be analyzed together. inherits relations represent the interrelationships
between a class and its super-class, which are also closely associated. Moreover, if methods defined in
one class are used by another class, it is also an important indicator of associated classes.

Based on previous research [10], we found that class attribute and method call relationships between
source code components also indicate potential traceability links. The attributes of a class describe
the properties of the class. If a class contains another class as its attribute, it usually means that there
is an inclusion relationship between the two classes. According to empirical research, if a use case
has a traceability link with a class A, then the use case usually also has a traceability link with other
classes that have attribute relationships with the class A. A method of a class often calls methods of
another class. If there is a method call relationship between two classes, it often means that there is a
close relationship between them. According to empirical research, if there is a traceability link between
a use case and class A, there is usually a traceability link between the use case and other classes that
call methods of class A.

Therefore, we propose to focus on the features of the source code structural information that are
shown in Table 3. In previous research, we found that the method parameter structural information is
not helpful for traceability recovery, and even negatively impacts the results sometimes. Therefore,
in this study, Phase 2 did not use method parameter structural information for traceability recovery.

Table 3. The structural information features of source code in Phase 2.

Artifact Feature Description

Source
Code

Class Implementation The class implementation relationship
Class Inheritance The class inheritance relationship
Method Return The method return relationship
Class Attribute The class attribute relationship
Method Call The method call relationship

According to the domain knowledge and the structural information features between source code
components, we have proposed the following inference rules in order to discover more traceability
links. Specifically, we traverse all the traceability links output from phase 1, and identify new links as
long as they match our defined inference rules.

Rule 1 : traceability_link(use_case(si), source_code(ck))

← traceability_link(use_case(si), source_code(cj))

∧implement(source_code(ck), source_code(cj))

(2)
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Rule 2 : traceability_link(use_case(si), source_code(ck))

← traceability_link(use_case(si), source_code(cj))

∧inherit(source_code(ck), source_code(cj))

(3)

Rule 3 : traceability_link(use_case(si), source_code(ck))

← traceability_link(use_case(si), source_code(cj))

∧return(source_code(ck), source_code(cj))

(4)

Rule 4 : traceability_link(use_case(si), source_code(ck))

← traceability_link(use_case(si), source_code(cj))

∧attribute(source_code(ck), source_code(cj))

(5)

Rule 5 : traceability_link(use_case(si), source_code(ck))

← traceability_link(use_case(si), source_code(cj))

∧method_call(source_code(ck), source_code(cj))

(6)

Rule 1 means if there is a traceability link between use case si and source code cj, and source code
ck implements source code cj, then there is a traceability link between use case si and source code ck.

Rule 2 means if there is a traceability link between use case si and source code cj, and source code
ck inherits source code cj, then there is a traceability link between use case si and source code ck.

Rule 3 means if there is a traceability link between use case si and source code cj, and the method
in source code cj use source code ck as its return type, then there is a traceability link between use case
si and source code ck.

Rule 4 means if there is a traceability link between use case si and source code cj, and source code
ck contain source code cj as its attribute, then there is a traceability link between use case si and source
code ck.

Rule 5 means if there is a traceability link between use case si and source code cj, and the method
in source code ck call the method in source code cj, then there is a traceability link between use case si
and source code ck.

3.3.2. Interrelationships between Use Cases

In addition to exploring the interrelationships between source code classes, we argue it is equally
important to investigate the interrelationships between use cases. A use case describes the system
response to participant requests in certain conditions. The interrelationships between use cases contain
include, extend, and generalize. All of these are explored in our approach. We here first briefly introduce
the three types of relationships, and then describe how they are used in our approach.

Include: The include relationship means that a use case can include behaviors that other use
cases have and contain them as a part of its own behavior. Use of the include relationship can avoid
inconsistencies and duplicate work in multiple use cases. Figure 7 shows an example of an include
relationship. Use cases with an include relationship are usually closely related. According to our
empirical investigation, if there is a traceability link between the use case U and a class C, then other
use cases which have an include relationship with the use case U usually also have traceability links
with the class C.

Extend: The extend relationship means adding a new behavior to an existing use case under
specified conditions. In this type of relationship, the base use case provides one or more insertion
points, and the extending use case provides the behaviors that need to be inserted for these insertion
points. An example of an extend relationship is shown in Figure 8. Use cases with extend relationship
are usually closely related. According to our empirical research, if there is a traceability link between
the a case U and a class C, then other use cases that have an extend relationship with the use case U
are very likely to have traceability links with the class C.
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Figure 7. The include relationship between use cases.

Figure 8. The extend relationship between use cases.

Generalize: The generalize relationship of use cases means that a basic use case can be generalized
into multiple sub use cases. If multiple use cases have the same structure and behavior, we can abstract
their commonality as the basic use case. An example of a generalize relationship is shown in Figure 9.
Use cases with generalization relationships are usually closely related. According to our empirical
research, if there is a traceability link between a use case U and a class C, then other use cases that have
generalization relationship with use case U usually also have traceability links with the class C.

Figure 9. The generalize relationship between use cases.

On the whole, we propose the following use case relationships as features, which are shown in
Table 4. Considering such relationships, we have defined the following inference rules based on the
semantics of these relationships: Rule 6 means if there is a traceability link between use case si and
source code cj, and use case sk includes use case si, then there is a traceability link between use case sk
and source code cj. Rule 7 means if there is a traceability link between use case si and source code cj,
and use case sk extends use case si, then there is a traceability link between use case sk and source code
cj. Rule 8 means if there is a traceability link between use case si and source code cj, and use case si
generalizes use case sk, then there is a traceability link between use case sk and source code cj.

Rule6 : traceability_link(use_case(sk), source_code(cj))

← traceability_link(use_case(si), source_code(cj))

∧include(use_case(sk), use_case(si))

(7)
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Rule7 : traceability_link((use_case(sk), source_code(cj))

← traceability_link(use_case(si), source_code(cj))

∧extend(use_case(sk), use_case(si))

(8)

Rule8 : traceability_link((use_case(sk), source_code(cj))

← traceability_link(use_case(si), source_code(cj))

∧generalize(use_case(si), use_case(sk))

(9)

We apply these rules to capture more links based on the traceability links output by the
inference rules that are defined in Section 3.3.1. In other words, the two types of interrelationships
(source code interrelationships and use case interrelationships) are sequentially explored in our
approach. Specifically, we traverse the traceability links output from the first step and set the tag of the
corresponding link to 1 where it matches any of rules 6–8.

Table 4. The relationship feature of use case in phase 2.

Artifact Feature Description

Use
Case

Include The include relationship between use cases.
Extend The extend relationship between use cases.
Generalize The generalization relationship between use cases.

4. Evaluation

In this section, we detail the design and analysis of our evaluation experiments.

4.1. Datasets

To evaluate the approach proposed in this paper more effectively, we apply it on multiple datasets.
We selected eTour, SMOS, Albergate, and eANCI as project repositories that are widely used in
traceability recovery evaluation [2–4,17]. eTour is an electronic touristic guide system that we have
used in our previous study. It contains 58 use cases, 116 source code classes and 336 correct links.
SMOS is a high school student monitoring system that contains 67 use cases, 100 source code classes
and 1045 correct links. Albergate is a hotel management system containing 17 use cases, 55 source
code classes and 54 correct links. eANCI is a municipalities management system with 140 use cases,
55 source code classes and 567 correct links. The artifact language for the project systems are all Italian,
so we need to translate it into English. The correct links are verified, which are called the oracle to
analyze the experimental results of the proposed approach. The details of the dataset are shown
in Table 5.

Table 5. Details of the datasets.

Project Source
Artifact(#) Target Artifact(#) Correct Links Description

eTour Use cases (58) Source Code Classes
(116) 336 An electronic touristic guide

system

SMOS Use cases (67) Source Code Classes
(100) 1045 High school student

monitoring system

Albergate Use cases (17) Source Code Classes (55) 54 Hotel management system

eANCI Use cases (140) Source Code Classes (55) 567 Municipalities management
system
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4.2. Metric

We here adopt two widely used metrics to evaluate our proposed approach, i.e., precision and recall.

precision =
|correct ∩ retrieved|
|retrieved| % (10)

recall =
|correct ∩ retrieved|

|correct| % (11)

where correct represents the set of correct links, and retrieved is the set of all links retrieved by the
traceability recovery technique. In addition, we use F1-score to complement the above two metrics,
which is the harmonic mean of those two.

F1 - score =
2× precision× recall

precision + recall
(12)

4.3. Research Questions

To fully evaluate our study, we propose a series of research questions in this section.

• RQ1: In Phase 1 machine learning recovery, does the addition of the class attribute, method
parameter, and method return features to the traceability link vector definition improve
traceability recovery?

• RQ2: Which is the most appropriate machine learning algorithm for our approach?

– RQ2.1: For the traceability recovery task, which classification algorithm is most effective?
Which classification algorithm is most suitable for traceability recovery?

– RQ2.2: What is the most suitable value of parameter k when using the KNN classification
algorithm for traceability recovery?

– RQ2.3: When using SVM classification algorithm for traceability recovery, which kernel can
obtain better experimental results?

• RQ3: Which structural information features between source code classes are effective for
predicting traceability links based on logical reasoning?

• RQ4: Can using logical reasoning rules based on relationship features between use cases further
improve traceability recovery?

• RQ5: What is the interaction between structural information features of source code components
and relationship features of use cases?

– RQ5.1: Is the structural information feature of source code components more important than
the relationship features of use cases for traceability recovery?

– RQ5.2: Can the combination of source code and use case relationship features further
improve traceability recovery?

• RQ6: Can our proposal outperform existing traceability link recovery approaches?

4.4. Experiment Design

In this section, we design a series of experiments in response to the research questions we have
proposed. We implement our approach on four data sets that are eTour, SMOS, Albergate and eANCI,
as discussed in Section 4.1. We will calculate and present the average results obtained from all the
four datasets.

Experiment 1: For the research question RQ1, in phase 1 machine learning recovery,
we respectively input the traceability link vector with and without the feature dimensions of class
attribute, method parameter, and method return into the classification model for traceability recovery.
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Experiment 2: For the research questions RQ2, RQ2.1, RQ2.2, and RQ2.3, we use different
classification algorithms and set different parameters to observe which classification algorithm with
specific parameters can achieve better results. We will use the results of Experiment 2 to choose the
suitable algorithms with proper parameters for later experiments.

Experiment 3: For the research question RQ3, in Phase 2 Logical Reasoning Recovery, for each
structural information feature between source code classes, we use the corresponding logical reasoning
rule separately to capture traceability links.

Experiment 4: For the research question RQ4, we have designed a series of experiments to
measure the effectiveness of capturing relationships among use cases when defining the inference rules.
Specifically, we first compare the following two cases to see whether use case relationships contribute
to the original approach: (1) applying only the machine learning approach; (2) applying the machine
learning approach and inference rules derived from use case interrelationships. Then, we compare the
following two cases to see whether use case relationships can render additional values on the top of
the initial hybrid approach: (1) applying the machine learning approach and inference rules derived
from source code classes; (2) applying the machine learning approach and inference rules derived from
both source code classes and use cases.

Experiment 5.1: For the research question RQ5.1, we observed the experimental results in the
following two cases: (1) After phase 1 machine learning recovery, additionally using logical reasoning
rules based on source code structural information features to perform traceability recovery. (2) After
phase 1 machine learning recovery, additionally using logical reasoning rules based on use case
relationship features to perform traceability recovery.

Experiment 5.2: For the research question RQ5.2, we observe the experimental results of the
following cases: (1) Using logical reasoning rules based on source code structural information features
to perform traceability recovery. (2) Using logical reasoning rules based on use case relationship
features to perform traceability recovery. (3) Combine using logical reasoning rules based on source
code structural information features and use case relationship features.

In order to answer the research question RQ6, we compared our approach with other research
methods on multiple datasets.

Experiment 6.1: On the eTour data set, we compare our approach with Combine IR [17], Relational
Topic Modeling [2], UD-CSTI [3], and R2C [4].

Experiment 6.2: On the Albergate dataset, we compare the proposed method with the
VSM-based method [14].

Experiment 6.3: On the SMOS dataset, we compare the proposed in this paper with the
UD-CSTI method [3].

4.5. Results and Analysis

In this section, we present and analyze the results of our experiments. Figure 10 shows the result
of Experiment 1. In our previous research [10], we utilized the class name, class comment, method
name and method comment source code features. In this paper, we further utilize tje class attribute,
method parameter and method return features. As can be seen in Figure 10, after adding the class
attribute, method parameter and method return features for the traceability link vector definition,
the precision, recall, and F1-score are all slightly improved.

Therefore, we can answer the RQ1. We propose that adding class attribute, method parameter,
and method return features to the traceability link vector definition can improve traceability recovery.
Class attribute, method parameter, and method return are meaningful features for traceability recovery.

Next we conduct Experiment 2. Figure 11 shows the classification result on eTour. It can be seen
from Figure 11 that Decision Tree, KNN, Random Forest, and GBDT can achieve good performance,
and their performance is similar. In this paper, we combine using the decision tree, KNN, random
forest and GBDT classification models for traceability recovery, merging the results of these classifier
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model. The SVM algorithm can achieve high precision, but its recall and F1-score are low. The results
obtained by logistic regression and multinomial native bayes are low.

Figure 10. Comparison of before and after adding features (class attribute, method parameter and
method return) to the traceability link vector definition.

Figure 11. Results of various classification models that are applied in the machine learning recovery phase.

Therefore, we can answer the RQ2 and RQ2.1. We find that decision tree, KNN, random forest
and GBDT are all suitable classification algorithms for traceability recovery. Logistic regression,
multinomial native bayes are not suitable for the traceability recovery task. If the traceability recovery
task needs to achieve high precision without considering recall, an SVM classification model is a good
choice. In our study, we combine the decision tree, KNN, random forest and GBDT classification
models for traceability recovery, merging the output links of these classifier models.

Next, we explore the suitable value of the k parameter for KNN. Generally, if the value of k is too
small, noise will have a greater impact on the prediction, which will cause deviations. A decrease in k
value means that the overall model becomes more complex and prone to overfitting. If the value of k is
too large, the approximate error of learning will increase, and instances far from the input target point
will have an detrimental effect on the prediction.

It can be seen from Figure 12 that as the value of k increases, precision improves slightly, and recall
and F1-score decrease. When the parameter k is set to a smaller value, a better classification effect can
be achieved. Therefore, when the value of k is smaller, the classification effect is better. In response to
RQ2.2, the value of k is 5 in our study.

As can be seen from the Figure 13, the experimental results of the SVM classification algorithm
are highest when using an rbf kernel, and lowest when using a sigmoid kernel. As the answer to the
RQ2.3, we propose using rbf as the kernel when using SVM.

Although the recall and F1-score obtained by using SVM for traceability recovery are low, it can
achieve a high precision. When it is necessary to obtain a high precision without considering recall,
SVM is a suitable choice.
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Figure 12. Results of using the k-nearest neighbors (KNN) classification model for traceability recovery
with different k values on the eANCI dataset.

Figure 13. Results of using the support vector machine (SVM) classification model for traceability link
recovery with different kernel functions on the SMOS dataset.

The results of Experiment 3 can be seen in Figure 14. By applying the implement, inherit, return,
attribute and method call rules to capture traceability links after machine learning recovery, our
approach can achieve higher results, especially for the implement, inherit and method call features.
Using these source code structural information feature rules in combination can further improve
the results.

Figure 14. Results of using various structural information features of source code to perform traceability
link recovery.
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Therefore, we can answer the RQ3. We propose that using logical reasoning rules based on the
features of implement, inherit, return, attribute, method call can effectively capture the traceability links.
Implement, inherit, return, attribute, and method call are all important features for traceability recovery.

According to the Experiment 4 results in Figure 15, it can be seen that after applying logical
reasoning rules based on use case relationship features to capture more traceability links, the precision,
recall, and F1-score of traceability recovery are further improved.

Figure 15. Comparison of different combinations of our proposal on the SMOS dataset. Logical
reasoning rule 1–5 are designed based on source code interrelationships, while logical reasoning 6–8
are designed based on use case interrelationships.

In response to RQ4, we propose that the relationship features of use cases can help to improve
traceability recovery. Using the rules based on the use case relationship features can further capture
more traceability links. The use case relationship features are significant for traceability recovery.

The result of Experiment 5.1 can be seen from the Figure 15. Using logical reasoning rules based
on source code structural information features to perform traceability recovery, the improvement of
the traceability recovery is more obvious, when compared to using logical reasoning rules based on
use case relationship features.

Therefore, as the answer to RQ5.1, we believe that the features based on structural information
between source code classes are more important than the relationship features between use cases,
and can play a greater role. We speculate that this is because in the project system, the source code
structural information is larger and more complex than for the use case relationships.

The result of Experiment 5.2 can be seen from Figure 15. The experimental results shows that
using the source code structural information features and use case relationship features in combination
can further improve traceability recovery, particularly the recall.

In response to RQ5.2, we propose that the source code structural information features and use
case relationship features have gain effect on each other, and the combination of using the source code
structural information features and use case relationship features can capture more traceability links.

In conclusion for RQ5, the structural information is more important than the relationship between
use cases, but they can improve each other.

The result of Experiment 6.1 can be seen from Figure 16 that the precision, recall, and F1-score
obtained by our approach are higher than other research methods [2–4,17] on the eTour data set.



Appl. Sci. 2020, 10, 7253 19 of 23

According to the result of Experiment 6.2 shown in Figure 17, the recall obtained by our method
is lower than the VSM-based method [14], but the precision, F1-score is higher than the VSM-based
method on the Albergate dataset.

According to the result of Experiment 6.3 shown in Figure 18, on the SMOS dataset it can be
seen that the precision, recall, and F1-score obtained by our method are higher than the UD-CSTI
method [3], especially in precision and F1-score.

Therefore, as the answer of RQ6, the method proposed in this paper explore features of artifacts
effectively which can achieve very high evaluation results. Our approach is an effective method for
traceability recovery, and surpasses the methods proposed in related research.

Figure 16. The result of comparing our proposed approach with methods proposed by related researchers
on the eTour dataset.

Figure 17. The result of comparing our proposed approach with methods proposed by related researchers
on the Albergate dataset.
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Figure 18. The result of comparing our proposed approach with methods proposed by related researchers
on the SMOS dataset.

5. Threats to Validity

We discuss the validity of our experiments by following the classification of threats used in [36].
In particular, we discuss internal validity, construct validity, external validity, and conclusion validity,
respectively.

Internal validity takes into account the relationship between approach and result. The dataset
projects used in our study are developed in Italian, and we translate the content of the software
artifacts into English. Some semantics of the software artifacts may be lost during translation, so the
translation process may affect the results of our approach. The classification algorithm used by the
study may have an impact on traceability link recovery. Supervised learning contains a variety of
classification algorithms. This paper adopts the decision tree, KNN, random forest and GBDT as the
classification models.

Construct validity describes whether the theoretical construction of our proposed method is
correct. The approach that extracting features based on domain knowledge and defining rules to
capture links directly are valid, which has been demonstrated by empirical research. Whether all
traceability links conform to the rules requires further investigation.

External validity discusses whether our approach can be extended from the experimental
environment to the development of industrial systems. The software project repositories used in
this paper are implemented by students. The business logic of industrial projects is often very complex.
So the software artifacts of industrial projects are much more complicated than they are in our study.
However, these software projects are comparable to the repositories used by other studies.

Conclusion validity usually involves the ability of our approach to reach the correct conclusion.
Due to the scale of the data set, it may affect the effectiveness of machine learning classification
algorithms. To this end, we use k-fold cross-validation to overcome this problem.

6. Conclusions and Future Work

Software requirements traceability recovery creates links between software artifacts, which is
important for software comprehension. Given a large amount of redundant irrelevant information
in the software artifacts, we propose not to treat them as a whole but investigate and focus only
on essential features for recovering traceability links. Specifically, we select meaningful features of
software artifacts and propose an effective method to embed such meaning into training vectors.
A set of useful machine learning algorithms are adopted in order to discover a wide spectrum of
traceability links.

In addition, we also propose using logical reasoning to further discover traceability links in
addition to the results derived from the machine learning analysis. To this end, we investigate
the semantics of corresponding artifacts in detail and propose a set of meaningful inference rules.
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The experimental results show that our proposed method can outperform other approaches by
achieving higher precision and recall, substantially improving F1-score.

In the future, we plan to find more significant features of artifacts to improve traceability recovery.
Note that we explore artificial intelligence techniques by combining machine learning and logical
reasoning, while the machine learning part is not as explainable as the logical reasoning part. In order
to iteratively improve the performance of our approach, it is essential to open the black box of the
machine learning part, making it explainable [37]. Specifically, the explainable evidence derived from
the machine learning part will shed light on the design of the logical reasoning part, i.e., disclosing
meaningful inference rules to identify traceability recovery rules.

As we clarified before, our proposal is not supposed to fully automate the traceability link recovery
task due to its inherit difficulty. Instead, our approach would serve as an auxiliary tool that help
people to recover traceability links in a more efficient manner than manual analysis. As such, another
branch of our future is to investigate the specific way of combining manual and automatic efforts,
pragmatically helping people to efficiently use our approach to recover traceability links with the least
human efforts. Finally, we are seeking for practical scenarios from industry to pragmatically examine
the utility of our approach.
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