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Abstract—Predicting claims’ reserve is a critical challenge for
insurers and has dramatic consequences on their managerial,
financial and underwriting decisions. The insurers’ capital and
their underwriting capacity of further business are subject to
the unexpected reserve estimation. Increasing premium rates
and adjusting the underwriting policy decisions may balance
the impact of unexpected claims. Consequently, this will impli-
cate their business opportunities negatively. Fortunately, several
papers focusing on the prediction of insurance reserve have
been published in the literature. In this paper, we provide a
comprehensive review of the research on the insurance reserve
prediction techniques in economics and actuarial science litera-
ture as well as machine learning and computer science literature.
Moreover, we classify these techniques into different approaches
based on the prediction mechanism they use in estimation. For
each approach, we survey reserve prediction methods, and then
show the similarities and differences among them. In addition,
the review is armed with a discussion on main the challenges
and the future opportunities.

Index Terms—Reserve prediction, Insurance data analytics,
Loss estimation, Actuarial chain ladder, Stochastic methods.

I. INTRODUCTION

In the insurance domain, an insurance policy covers a
defined period. If a loss occurs during the period of the
policy, then the insurance company should compensate the
policyholder by an amount equivalent to the loss suffered. The
formal request for compensation by a policyholder is called
an insurance claim and the amount requested is called the
loss amount. In fact, insurance companies do not know the
number and cost of claims in advance. However, they must
make sure that the size of the reservoir of money they hold
is adequate to cover the potential liabilities already assumed.
This reservoir of money to cover future claims is known as a
loss reserve. The future obligations arise naturally at a specific
date; the volume and value of future claims must be accurately
predicted so adequate but not excessive reserve is held.

Identify applicable funding agency here. If none, delete this.

Insurance companies have a strong interest in the accurate
estimation of loss reserve values because of the following
reasons [1]; Loss reserves are considered as a loan that the
insurance company owes its customers. Under-estimation of
reserve values may cause a failure to meet claim liabilities.
By contrast, an insurer with overestimation reserve values
may result in a weaker financial position than it truly has
and cause loss market share. Additionally, the reserve value
is used in the insurance policies pricing process because they
provide estimates of unpaid cost of insurance. Furthermore,
laws and regulations require identifying loss reserve values
and the public customers are interested in the financial strength
of insurance companies. Moreover, many investors make de-
cisions based the values of loss reserve values. Insurance loss
reserving prediction techniques aim to estimate the final value
of open claims that already happened and for which the insurer
will be committed to pay [1].

II. CATEGORIZATION OF INSURANCE LOSS RESERVE
TECHNIQUES

In the literature we can see that insurance reserve predic-
tion techniques may be classified into two main categories;
classical actuarial chain ladder or stochastic methods [2]–
[14], and machine learning based reserve prediction methods
[15]–[17] as seen in Figure1. The classical reserve analytics
techniques are based on chain ladder method, which relies
on building two-dimensional matrices called reserve triangles.
Reserve triangles are developed from accumulating claims data
over the claim lifetime. Then a stochastic process is used to
generate the run-off matrices from the claim data. These run-
off-matrices are used in the estimating the final reserve value.
Finally, stochastic regression models are used in predicting the
insurance reserve values for these claims.

The stochastic reserving approach assumes that the behavior
and activities of insurance claims that happened in the past will
continue to be happened in the future. In other words, there is
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Fig. 1. The Taxonomy of Insurance Reserve Prediction Methods

no significant change in the behavior of claims’ activities over
time. Thus, they use simple statistical forecasting techniques
e.g., regression models to predict the final value of claims.
Classical reserve analytics techniques are simple as well as fast
techniques. However, Avanzi et al., [2] claim that stochastic
methods are not accurate compared to machine learning-based
methods especially for complex claims data. The complexity
of data may result from some random fluctuations in the
claims data, which results in changing what will happen in
the future from what has been seen in the past. Stochastic
reserve analytics techniques can be further divided into two
main categories [2]; parametric models and non-parametric
models. The parametric models rely on numerical values in
claim data following statistical distributions, and these models
try to find the best parameters’ values of these statistical
distributions. For example, if the claim reserve values follow
a normal distribution then these models aim at finding the
best values of the normal distribution parameters, mean and
standard deviation, to predict the reserve value in the future.
While, non-parametric models do not assume any statistical
distribution [18]. Non-parametric models are used when the
insurance claims data fails to follow any statistical distribution.
However, parametric models usually have better performance
and are faster than non-parametric models but parametric
models cannot be used if the insurance data does not fit
into any statistical distribution. On the other hand, machine
learning based techniques try to deal with complex insurance
data, where the behavior or activity that gave rise to the claims
in the past will not appear in the future. In other words, if
insurance claims have different characteristics over time, and
thus, there is no pattern (model) can represent the development
of these insurance claims over their lifetime because of random
fluctuations. Therefore, simple estimation models used in
stochastic model and non-parametric methods for future claim
reserves but not reported claim reserve estimation s e.g., chain
ladder and linear regression are no longer be suitable to predict
the claims’ characteristics in future. Consequently, machine
learning-based methods, which rely on nonlinear predictive
techniques, become more promising for this kind of data.

Machine learning techniques may be further divided into
four categories; decision trees-based techniques [19], support

vector machine SVM-based techniques [20], neural network
based techniques [15], [17] and deep learning based techniques
e.g., [16]. The machine learning based techniques have the fol-
lowing advantages over the classical chain ladder techniques;
they allow for joint modeling of many multiple numerical
values e.g., paid losses and claims outstanding. Additionally,
they can incorporate multiple heterogeneous inputs formats
e.g. numerical, categorical and textual data. Moreover, they can
jointly handle different types of insurance claims for different
types of insurance claims over different time periods in a
single model. Finally, they significantly outperform existing
stochastic methods in accuracy because machine learning
models make use of heterogeneous claim data e.g., textual
report which can not be used in classical stochastic techniques.
As a result, more data could enhance the understanding and
representation of prediction models, thus, they improve the
prediction accuracy [16].

III. STOCHASTIC RESERVE PREDICTION METHODS

Stochastic reserve prediction methods are in widespread use
throughout the actuarial literature. They are based on building
loss triangles the [2]–[14]. Stochastic loss-reserve prediction
methods have different taxonomies based on model param-
eters or number of business lines. In the model parameters,
Stochastic loss-reserve prediction methods can be divided into
two groups; parametric methods, where claim data can fit into
statistical model or pattern then the goal is this case searching
for the best values of model parameters. However, if the data
can not be fitted into pattern then non-parametric loss reserve
techniques could be used which is not depends on statistical
distribution. On the other hand, there is another taxonomy for
stochastic loss reserve methods based on number of business
lines. They may be classified into two main groups; single
business line e.g., [21], [22], and [15] and multiple business
lines e.g., [18], [2], [23] and [19] as shown in Figure2. The
single business line approach relies on handling individual
business line rather than handling multiple business line jointly
to focus on detailed information and behavior of individual
claims [15]. However, the multiple business lines approach is
more common in stochastic methods. It relies on aggregating
claims data from different business lines because insurance
companies usually have multiple business lines. Thus, the
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insurer aims to group the reserves of individual business
lines together to enjoy the diversification benefits because the
information which comes from other business lines enrich
the generated model that refine the understanding of claims
behavior which leads to improving of model accuracy [18].
However, the multiple approach will not get accurate results
unless there are perfect depenadencies among business lines
[18]. Perfect dependencies means business line are strongly
affect each other. Thus, the stochastic reserve prediction so-
lutions can be classified into two categories; stochastic loss
reserving with dependence and stochastic loss reserving with
non-perfect dependence [2].

Examples of Stochastic loss reserving models with depen-
dence contain [24], [25], [26], The chain ladder model and
Mack’s model [27] and [18]. However, examples of stochastic
loss reserving models with non-perfect dependence include
[28], [29], [30], and [31].

A novel stochastic loss reserving parametric model with
dependence is proposed in [2] based on the statistical Tweedie
distributions [32] to utilize the richness of these distribution.
Tweedie distributions are a family of probability distributions
containing the purely continuous distribution such as normal,
gamma and inverse Gaussian distributions, the purely discrete
scaled such as Poisson distribution, and the class of com-
pound Poisson–gamma distribution [32]. Tweedie distributions
are often used as generalized linear models. The proposed
multivariate Tweedie approach captures cell-wise dependence;
the correlation among claim values in certain dates within
the loss triangles cells. The multivalued Tweedie approach
can be generalized to multiple business lines. Consequently, a
multivariate Tweedie approach was proposed to capture cell-
wise dependence to improve insurance loss reserve techniques
[2]. Moreover, the moments that are obtained analytically
can be expressed in closed form. This model is based on
data simulation to estimate the parameters’ values. Two simu-
lated datasets are generated to evaluate the effectiveness of
the fitting procedure. The first dataset is generated from a
multivariate Tweedie distribution with parameters chosen to
replicate an empirical data set. While, the second experiment
utilises a simulated dataset to determine the performance of
the fitting procedure in presence of zeros. The experiments
showed that Tweedie’s compound Poisson distribution with
1 < p < 2, is a useful subset of distributions in loss

reserving with the ability to accommodate masses at zeros
[33]. Furthermore, it is evaluated using Pennsylvania National
Insurance Group (Schedule P) dataset [34]. The real data
experiments show that the multivariate Tweedie model has a
very good fit to the data set. The results are obtained efficiently
using Markov Chain Monte Carlo (MCMC) method. However,
this model has the advantage of having tractable cumulants of
outstanding claims to efficiently calculate the mean and the
variance of total outstanding losses. Finally, the multivariate
Tweedie approach [2] is a general approach that provides great
flexibility with potential developments in activities leading to
claims. However, this approach should require using the same
power parameter p for all lines of business as well as perfect
dependence structure for all business lines [2].

Another reserve parametric model with dependence is a
censored Copula model [35]. It is based on using the Cou-
pla; an actuarial multivariate cumulative distribution function
where the marginal probability distribution of each variable
is uniform. A censored means estimating the evolution of
open insurance claims. This model relies on the dependency
structure of age (the time before settlement) and value of
insurance claims. This model targets open (censored) claims.
Uncensored claims tend to be small claims because they
usually take short time to close. This model extends the gen-
eralized linear regression model to the context of censoring. It
handles difficulty of estimating a conditional copula function
without having especially in high dimensional data [35].

The Kaishev’s model has been proposed [23] to model
dynamic operational risk capital within multiple business line.
The operational reserve loss and reserving strategy are signif-
icantly affected by of the sizes of operational losses. Further-
more, the authors suggest studying the crossover dependence
(the correlation) between inter - occurrence times of losses
and their amounts. The authors suggest studying the crossover
dependence (the correlation) between inter-occurrence times of
losses and their amounts [23]. Kaishev model relies on em-
ploying the finite time probability (operational risk measure)
within a general risk model because the finite time probability-
based model can handle non-homogeneous operational loss
frequency and dependent loss severities, which may have any
joint discrete or continuous distribution. This article use Loss
Data Collection Exercise (LDCE) dataset to test this model
[23].

IV. MACHINE LEARNING BASED TECHNIQUES

As we mentioned before the chain ladder model assumes
that the behavior and activities that give rise to insurance
claims that happened in the past will continue to be hap-
pened in the future. An example of a behavior or activity
would be careless driving causing accidents or a hurricanes
causing property damage. So the model is assuming that the
number of car accidents and hurricanes that occured in the
past will continue into the future. The chain ladder model
and the assumptions in Mack’s model [27] are not always
the most appropriate to use in practice. Thus, the machine
learning approach is more promising. This approach focuses



on using complex (nonlinear models) prediction techniques
to estimate insurance loss reserve values. It aims to improve
prediction accuracy based on including claim information
e.g., business line, claim type and age in prediction process.
Machine learning techniques may be categorized into four cat-
egories; decision trees-based techniques e.g., [19], SVM-based
techniques e.g. [20], neural network based techniques e.g.,
Neural Networks based Chain-Ladder Reserving (NNCLR)
[17] and deep learning based methods e.g., Deep Triangle
[16]. A decision tree – based technique was proposed [19] to
predict insurance reserve values. It is considered a multi-label
supervised learning approach, where each claim is categorized
into one of a number of well-predefined labels. This approach
consists of two phases; two phases: The training phase and
the testing phase. In the training phase, well-known samples
of insurance claims from all classes are required in building a
classification model, which is used to distinguish among the
behavior of each class. The established classification model is
then used for predicting the class label for the open claims in
the testing phase [17].

In contrast to the classical chain ladder approach, this
technique uses all available information about claims to build
a decision tree. It is considered a data driven technique, which
means that the established decision tree affected by the data
in the training phase e.g., claim samples in the training phase
should cover all classes with similar probability of occurrence.
It deals with the data heterogeneity, different data types e.g.,
categorical and numerical with different format. The data
heterogeneity is resulting from the insurance claims evolution
and/or their characteristics. A decision tree – based technique
[19] relies on developing a weighted CART algorithm (Clas-
sification And Regression Trees) [36]. A decision tree–based
approach [19] focus on structured data, numerical and cat-
egorical attributes. This model aims at predicting insurance
claims, which have been reported and not yet settled (RBNS)
and open claims. Furthermore, it is promising because it is
simple and easy-to-understand. Additionally, it is based on
theoretical guarantees and consistent procedure because its
idea is clear which is based on consists of recursive splitting
the claims into more homogeneous groups. Moreover, it is
can handle long-development insurance claims that claims
spread over time and the model has discriminating power of
covariates. However, it is not very robust towards the change
in the patterns of emerging insurance claims [15] because
the change in data may require the tree be re-built from
scratch. In the future work, the authors suggest using bootstrap
resampling technique to get some confidence interval around
the estimation. A decision tree–based approach uses a pruning
strategy to derive consistency results and for the selection of
an optimal subtree. A simulation experimental study as well
as real data are used to evaluate the proposed technique [19].
This model is evaluated using real individual claim dataset for
RBNS and closed claims.

Neural Networks based Chain-Ladder Reserving (NNCLR)
[17] model extends the classical chain ladder techniques but
it relies on using nonlinear neural network regression mod-

els instead of linear regression models. NNCLR focuses on
employing claims’ information e.g., business line, claim type
and age in the prediction process. (NNCLR) [17] starts with
building Mack’s Chain Ladder [27], and then it preprocess the
data for shallow neural network. The preprocessing process
consists of two tasks; transforming categorical attributes to
numerical features to be suitable for neural network and all
numerical features should have the same scale. In transforming
categorical attributes to numerical attributes, NNCLR replace
categorical values by binary values using dummy variables.
It transforms a categorical attributes that contains r categories
into r–1 binary variables [37]. Then, all numerical attributes
are normalized using min-max normalization method and
hence all numerical feature have the same range of values
in order to have the same importance in the model. Finally,
NNCLR creates a simple neural network to forecast the reserve
values. It aims to improve the prediction accuracy by accurate
description of claims information utilizing individual claims
feature information. It considers feature information as static
features because in particular, NNCLR does not change over
time.

A more recent machine learning-based insurance reserve
prediction algorithm is Deep Triangle [16]. It proposes loss re-
serving based on deep neural networks. It consists of two steps;
the first step is based on building loss triangle then it uses
recurrent deep neural network based on loss triangle to predict
loss reserve values. Deep Triangle is a multi-task network with
multiple prediction goals depending on number of objectives
models. The original deep triangle techniques are designed
for two objectives; paid losses and claims outstanding. Thus
the proposed Deep Triangle has two prediction goal one for
paid loss and the other prediction goal for claims outstanding.
In addition, it can incorporate heterogeneous inputs (different
format, and time stamp). It is appropriate for loss reserving
data across multiple lines of business. Deep Triangle builds
one model for each line of business and each model is trained
on data from multiple companies [16].

The deep learning framework for estimating the paid losses
is able to attain performance comparable other stochastic
reserving techniques without expert parameters. It can incor-
porate multiple heterogeneous inputs and train on multiple
objectives simultaneously, and it can customize of models
based on available data. It takes longer time in processing.
It requires minimal feature engineering and expert inputs.
Thus, this model may be automated to produce forecasts more
frequently than manual workflows. Insurance information is
represented as sequential data. Thus, the most appropriate kind
of deep neural network is Recurrent Neural Network (RNN)
[15]. The recurrent neural network (RNN) is a common type
of artificial neural networks where connections between nodes
form a directed graph along a temporal sequence. This allows
it to exhibit temporal dynamic behavior. Therefore, Deep
Triangle relies on using a sequence-to-sequence architecture
recurrent units (GRU), which is a type of RNN building block
[38].



V. DISCUSSION

The prediction of reserve value is the most important
problem in the field of insurance data analytics. It aims at
forecasting the final value of insurance claims. The insurance
reserve prediction techniques are classified into two main
categories; Stochastic and machine learning-based techniques.

The Stochastic or chain ladder approach aims at predicting
accurate reserve based on the compacted data or reserve
triangles. Additionally, it is easy to implement and understand.
However, it is based the assumption that the data and activities
will occur similarly in the future as its occurrence in the past.
Thus, it will have bad performance if the claim pattern change
over time, which deviates from the underlying assumption.

On the other hand, the machine learning approach relies
on using information about claim in the prediction process
e.g., categorical and textual data. The claim information is
very useful in machine learning approach because it improves
its performance. Machine learning based insurance reserve
techniques are more complex than chain ladder techniques.
Company stakeholders, particularly actuarial peoples have
difficulty in understanding, developing, applying and putting
these techniques in practice [19]. By contrast, and despite the
widespread availability use of stochastic techniques in practice,
machine learning-based insurance reserve value prediction are
more promising and having accurate prediction rate compared
to classical stochastic insurance reserve analytics techniques.
Most machine learning approaches; decision trees, neural
network and deep neural network techniques obtained better
results than stochastic techniques.

VI. CONCLUSION AND FUTURE WORK

Predicting the loss reserve value is very significant problem
in the insurance sector. Available methods for the estimation
of loss reserve value in the actuarial as well as the machine
learning literatures are reviewed. The reserve prediction tech-
niques have been classified into different approaches based on
the prediction mechanism, focusing on the primary similarities
and differences. The review is armed with a discussion on
main the challenges. There are several directions for future
works in prediction of loss reserve value such as the following
directions:

• Enhancing the data preprocessing should process improve
the estimation process to increase data quality. Examples
of preprocessing tasks handling missing values, handing
noisy data, and better handling of categorical data corre-
lation/association.

• Improving the model prediction power though feature
selection and dimensionallity reduction features selection
or reduction will be promising to improve the processing
and accuracy of reserve prediction methods

• Utilizing other machine learning prediction approaches,
e.g., Naı̈ve Bayesian classifier, knn, and random forest.

• Incorporating the unstructured data such as insurance
reports, social behaviour data, spatio-temporal data, and
image data & multimedia data.
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