Real AI Applications in Manufacturing April 19, 2021

Professor Pekka Toivanen E-Mail: <u>Pekka.Toivanen@uef.fi</u> Tel: +358 40 543 9021

The Four Industrial Revolutions

Digital Innovation HUB UNIVERSITY OF EASTERN FINLAND

EASTERN FINLAND

- **Nearables** ensure the availability and delivery of digital services through the nearby smart surrounding.
- They provide the required services to the users without using gadgets or wearables.
- Instead, the intelligent and ambient environment offers the necessary/desired services to the users.

Dimension measurement of construction elements

Dimension measurement of construction elements

Automatic measurement of construction element dimensions

- Epipolar geometry
- 1 laser + 4 cameras

Research on paper surface

STORA ENSO RESEARCH

Paper roughness measurement using machine vision

LWC paper of different roughness

Results

Correlation between industry standard Bendtsen measurement and the developed new machine vision method

Classification of oven tiles

Classificaton of wood pieces based on knot classes

Classification of defects on wood

Sound	Decayed	Dry	Encased	Leaf	Horn	Edge
knot	knot	knot	knot	knot	knot	knot
Chefe		0	C			
0	0	0	0	A		Jak .
13		0		1		

Measurement of welfare of plants (cucumber)

Monitoring of cucumber using spectral imaging

Kuivatus, otos5 20.7.2000, klo 15.10-15.26, stressattu

Scanning setup/workstation

Introduction

- The aim was to implement a Machine vision framework that takes images of wood and then identify the defects and mark those defects so that those wood are separated from non defective wood.
- Our method successfully detected and classified the defects.
- The detection accuracy of our algorithm is 99 percent.
- The average accuracy for each class is 86 percent.

Operations:

- Recognition of defects
- Segmentation of defects
- Classification and localization of defects
- Calculation of number of defects
- Applicable for
 - Wood
 - Metal
 - Glass
 - Plastic
 - Etc.

Classification

Object Detection

Semantic Segmentation

Results

Scanning setup/workstation

- Multiple depth cameras and Machine vision camera are used to take RGB and depth images from around the objects.
- The setup also includes multiple LED lights to make different illumination.
- The images are then passed to the algorithm and processed to make a 3D model of the object
- In our current solution we used only image-based data to make 3d models of very challenging objects that has matt color and are without texture.
- Our method produced very accurate and near perfect 3d reconstruction of these challenging texture less objects.
- More sophisticated sensors like Lasers and structured light scanners can be used to integrate to our current setup to improve the reconstruction results.

Scanning setup/workstation

Some images from different views

Results

Recognition of printed text on packages

Intelligent handling of pharmaceutical packages

- Intelligent handling of pharmaceutical packaging
 - How to automate the task that now requires human vision?
 - Difficulty of recognizing texts made with different printing methods from distorted surfaces
 UEF uses a companys image for development work
 Noticed insufficient resolution of the images for OCR, company informed
- Novel text binarization method has been developed
 - A research article has been made on the method
 - Method presented at the Electronic Imaging 2021 Conference in USA
- Survey article now in progress of research on the packaging texts recognition
- The new information from the survey article will be utilized in the method development of the next stage

Binarized, Laser Printed Texts

UEF // University of Eastern Finland

Industrial Machine Vision /DigiCenterNS, Jarmo Koponen

Binarized, Stamped Texts

Industrial Machine Vision /DigiCenterNS, Jarmo Koponen

Conclusion

- We don't have yet general AI
- However, AI is developing rapidly
 - Conversational AI, Reasoning, Chatbots
 - Machine vision
 - 3D imaging
 - Spectral imaging
- Al can be used to solve an increasing number of difficult problems
- VR, AR, XR
 - XR Hub North Savo
- Digital twins

Thank You!

EASTERN FINLAND

