

Empirical Comparative Analysis of 1-of-K Coding and K-Prototypes in Categorical Clustering

Fei Wang¹, Hector Franco¹, John Pugh², and Robert Ross¹

1 School of Computing, Dublin Institute of Technology, Ireland 2 Nathean Technologies Ltd. Dublin, Ireland.

d13122837@mydit.ie

Introduction

Clustering is a fundamental machine learning application, which partitions data into homogeneous groups. K-means and its variants are the most widely used class of clustering algorithms today. In this paper, we compare two methods, 1-of-K coding and k-prototypes, in categorical data clustering.

Background

Our own interest in clustering stems from its importance in customer segmentation. We are particularly concerned with the data with a high proportion of categorical data, as it is the most common form of customer data.

1-of-K Coding and K-prototypes

- The common method 1-of-K coding converts each category feature into a set of binary features using 1 and 0 to represent a category value present or absent in objects;
- K-prototype on the other hand inherits the ideas of k-means, but applies the simple matching distance and modes to categorical features.

Results

From Fig. 1 and Fig. 2, it is shown that when the dataset gets large, the time consumed for k-means with 1-of-K coding is 2 to 3 times greater than that for k-prototypes.

Fig.1: Time Consumed - Soybean, Voting and Credit

Fig.2: Time Consumed - Mushroom, Adult and Bank

However, from Fig. 3 and Fig. 4, we can see that the k-means algorithm consumes much more time not because it needs more iterations to converge, but because 1-of-K coding substantially expands the dimensionality of the datasets.

Fig.3: Number of Iterations in Each Run Fig.4: Number of Features before/after 1-of-K Coding

Fig. 5, Fig. 6 and Fig. 7 summarise the accuracy calculation results of three datasets that have the accuracies correlated with the cost functions.

Acc	Accuracy Table - Soybean					
	Kmeans	Kprototypes				
100%	46	22.13				
99%-100%	0	0.00				
98%-99%	0	0.00				
97%-98%	0	8.47				
96%-97%	0	0.00				
95%-96%	0	12.27				
94%-95%	0	0.00				
93%-94%	0	0.00				
92%-93%	0	0.00				
91%-92%	0	2.27				
90%-91%	0	0.00				
<90%	54	54.86				

Fig.	<i>5</i> :	Accuracy	Table	- So	ybean
------	------------	----------	-------	------	-------

96	0.00
0	0.00
0	75.33
0	24.67
0	0.00
0	0.00
0	0.00
0	0.00
0	0.00
0	0.00
0	0.00
4	0.00
	0 0 0 0 0 0 0 0

Accuracy Table - Voting

Fig.6: Accuracy Table - Voting

- 1. Both algorithms get almost the same highest accuracy. The differences are only 1% 2%;
- 2. The valid results with k-means concentrate at the interval of highest accuracy, while the ones with k-prototypes spread much more widely in the valid range, that is, k-means is more stable than k-prototypes;

Accuracy Table - Mushroom					
	Kmeans	K-prototypes			
89%-90%	57	10.80			
88%-89%	0	14.20			
87%-88%	0	1.67			
86%-87%	0	1.47			
85%-86%	0	5.27			
84%-85%	0	0.00			
83%-84%	0	0.00			
82%-83%	0	1.00			
81%-82%	0	1.20			
80%-81%	0	0.93			
79%-80%	0	7.60			
<79%	43	55.86			

Fig.7: Accuracy Table - Mushroom

3. The results in bold refer to the objectively best results based on cost function. K-means probably finds only one global optimum, but k-prototypes can find multiple global optima.

Conclusion

Even though they use different distances in calculating dissimilarity, k-means with 1-of-K coding and k-prototypes provide similar best results. For the clustering speed, k-prototypes is faster than k-means with 1-of-K coding, because the latter expands significantly the dimensionality of the dataset. For the clustering validity, the valid results with k-prototypes spread in multiple optima, while the ones with k-means with 1-of-K coding concentrate in one point. Therefore, we conclude that k-means with 1-of-K coding is more stable than k-prototypes.