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Abstract. Continuous streaming data is commonplace across a wide
range of domains and industries, and analysing these often high volume
data streams in an on-line, low latency and scalable way can be challeng-
ing. We present a continuous clustering system for topic detection and
monitoring in high-throughput message streams. A parallel implementa-
tion of sequential leader clustering runs on the Storm1 stream processing
framework to achieve scalable performance for real world applications,
which we demonstrate for live topic detection in Twitter message data
and for spam identification in SMS data streams.

1 Introduction
Clustering is a core technique which is commonly used for many diverse data
mining tasks across different domains. A relevant example for streaming data
is the detection of emerging topics in message streams. The ability to monitor
discussion topics in a social media message stream, or detect which types of
content are flowing through a communications network can be highly useful
for understanding public opinion and interest, detecting and filtering spam and
enabling a service owner to understand what content is passing through their
infrastructure.

Applying clustering to streaming data presents a number of challenges when
compared with traditional off-line, batch clustering. Firstly, high clustering ac-
curacy is harder to achieve due to the constraints of processing continuous data
streams. Multiple passes over the data by a clustering algorithm and an iterative
process of cluster refinement are not possible. Secondly, the performance of the
clustering algorithm must be able to handle the required data throughput, as a
live data stream cannot be ‘paused’ while the clustering algorithm catches up. In
real world scenarios, throughput is not constant and scalability is a concern: both
in terms of scaling up to accommodate increased throughput and also scaling
back down to conserve resources. Thirdly, any overview of the cluster informa-
tion needs to convey the continuous and evolving nature of the data stream, a
static snapshot of the clusters cannot represent any temporal fluctuations.

Our continuous clustering system for topic detection and monitoring is de-
signed for high-throughput real world streaming data with particular emphasis
on low-latency performance and scalability. We have developed a parallel imple-
mentation of the Sequential Leader Clustering (SLC)[1] algorithm implemented

1 http://storm-project.net/
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on Storm, the open source scalable data stream processing framework. In the
next section we describe our approach in detail along with an overview of Storm
and locality sensitive hashing (LSH), a core technique underpinning our parallel
SLC implementation.

2 System Description
Although there are a number of algorithms specifically designed for cluster-
ing streaming data [2–4], the majority have not been developed with high-
throughput and scalability as a primary concern. We have focussed on SLC
which is computationally efficient, requiring only a single pass over the data and
thus is applicable for continuous streaming data. SLC is not as precise or accu-
rate over complex data as some more advanced algorithms, however it performs
well for clustering items where set similarity measures such as Jaccard similarity
are effective, as is the case with short text message content which is represented
as a ‘bag of words’. Furthermore, we are able to parallelise and distribute the
SLC algorithm by using LSH.

In LSH, items are hashed so that similar items (according to some similarity
measure) produce the same hash values. This differs from the conventional use
of hash functions: LSH aims to maximise the probability of collisions between
similar items rather than avoid collisions. There are a number of variations of
LSH for approximating different similarity metrics, we employ minHashing [5]
which approximates Jaccard similarity. We generate multiple hash values for
each message which allows us to control the error rate of the approximation.

This allows us to process and cluster messages arriving in the data stream
at different nodes in parallel in a distributed computing environment without
having to share and synchronise a master view of the current clusters between
nodes. Messages which are similar, i.e. share hash values, and hence belong
to the same cluster, are routed to the same node where cluster membership
and statistics can be reported independently of the other processing nodes. The
system can be horizontally scaled by adding or removing processing nodes to
increase or decrease message processing capacity to match the throughput of
the incoming data stream.

Our parallel version of SLC is implemented in Storm as a topology of inter-
connected processing units that together execute an algorithm continuously over
the incoming data stream. Each processing unit or bolt, can receive, transform
and then emit data to other connected bolts downstream in the topology. Storm
runs on a computing cluster of networked machines and topologies are automati-
cally distributed across the underlying physical infrastructure in order to reduce
network hops and maximise individual processor usage and a key strength is its
high throughput, high volume processing capability which matches our continu-
ous clustering requirements.

3 Applications and Performance
Detecting topics and trends in Twitter messages is a fertile area of research
with many academic publications [6, 7] and companies2 active in this area. Our

2 http://analytics.topsy.com, http://socialmarketanalytics.com
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continuous clustering approach is a good match for this task and is well suited
to the high throughput, highly variable Twitter stream. It is reported that over
500 million tweets are posted on Twitter per day3. Although access to the raw
Twitter firehose is not available to us we were able to gather a large dataset of
randomly sampled tweets which were collected over a number of months. These
tweets can then be replayed at an accelerated rate to replicate a much higher
message throughput.

Our continuous clustering system is deployed on a Storm cluster comprising
three worker machines (each a 12 core Intel processor with 64GB RAM) with
the clustering output being written to a Redis in-memory key/value store cache.
An animated live visualization of the clustering is dynamically generated from
the Redis cache and an illustrative screen shot is shown in Figure 1. During
performance testing we found that we could process, cluster and continually
output the cluster results for over 3.4 million messages per minute (over 55,000
per second). Furthermore the system can be easily scaled by adding additional
machines to the Storm cluster and we expect that further system tuning and
configuration will achieve even greater throughput.

Fig. 1. Screen shot of the Twitter topic detection application interface. Each circle’s
radius and colour represents the cluster size and mousing over a specific cluster shows
additional information. Radius and colour could also be used to convey other informa-
tion such as cluster growth rate or recency. The visualization continually updates as
the data stream is processed.

Another application area is spam identification in SMS (text message) streams.
As with other spam types, SMS spam tends to follow certain patterns such as

3 http://www.telegraph.co.uk/technology/Twitter/9945505/Twitter-in-
numbers.html
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large volumes of similar or identical messages being sent to multiple subscribers
over a short time period. The general message format and content may not have
appeared in previous attacks and detecting an emerging attack while also being
able to analyse the message content in order to block it at an early stage is of
great benefit to network operators. Our real-time continuous clustering approach
facilitates this early detection of spam by identifying emerging clusters of similar
messages. The ability to report specific cluster behaviours such as fast growth
rate can then be used to trigger whether further manual verification is required.
Similarly to Twitter and other real world message streams, SMS streams in large
mobile networks may carry thousands of messages per second and our parallel
and scalable approach can handle these volumes in near real-time. We are cur-
rently evaluating the spam identification use case with a large real world SMS
dataset provided by one of our industry partners and initial results show that
spam attacks are being accurately clustered and detected by our system.

4 Conclusions and Future Work
We have presented a continuous clustering system for topic detection and mon-
itoring in high-throughput message streams, and have given an overview of two
specific applications. The research is still in its initial stages and a number of ar-
eas for future work have been identified including implementing other similarity
metrics using locality sensitive hashing, clustering other types of data in addi-
tion to text, investigating alternative ways of reporting live clustering output for
different tasks, undertaking further performance evaluation and exploring other
potential application areas and domains.
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